Power MOSFET 65 A, 24 V N-Channel TO-220, D²PAK

Features

- Planar HD3e Process for Fast Switching Performance
- Low R_{DSon} to Minimize Conduction Loss
- Low C_{iss} to Minimize Driver Loss
- Low Gate Charge
- Pb–Free Packages are Available*

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	BR)DSS R _{DS(on)} TYP	
24 V	8.4 mΩ @ 10 V	65 A

PIN ASSIGNMENT

PIN	FUNCTION
1	Gate
2	Drain
3	Source
4	Drain

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ORDERING INFORMATION

MAXIMUM RATINGS (T_J = 25°C Unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	25	V _{dc}
Gate-to-Source Voltage - Continuous	V _{GS}	±20	V _{dc}
Thermal Resistance – Junction–to–Case Total Power Dissipation @ T _C = 25°C Drain Current –	R _{θJC} P _D	2.0 62.5	°C/W W
Continuous @ $T_C = 25^{\circ}C$, Chip Continuous @ $T_C = 25^{\circ}C$, Limited by Package Single Pulse ($t_p = 10 \ \mu s$)	I _D I _D I _{DM}	65 58 160	A A A
Thermal Resistance – Junction–to–Ambient (Note 1) Total Power Dissipation @ T _A = 25°C Drain Current – Continuous @ T _A = 25°C	R _{θJA} P _D I _D	67 1.86 10	°C/W W A
Thermal Resistance – Junction–to–Ambient (Note 2) Total Power Dissipation @ T _A = 25°C Drain Current – Continuous @ T _A = 25°C	R _{θJA} P _D I _D	120 1.04 7.6	°C/W W A
Operating and Storage Temperature Range	T _J and T _{stg}	–55 to 150	°C
Single Pulse Drain-to-Source Avalanche Energy – Starting T _J = 25°C (V_{DD} = 50 V _{dc} , V _{GS} = 10 V _{dc} , I _L = 11 A _{pk} , L = 1 mH, R _G = 25 Ω)	E _{AS}	60	mJ
Maximum Lead Temperature for Soldering Purposes, 1/8" from Case for 10 Seconds	ΤL	260	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- 1. When surface mounted to an FR4 board using 1 in. pad size, (Cu Area 1.127 in²).
- When surface mounted to an FR4 board using minimum recommended pad size, (Cu Area 0.412 in²).

Semiconductor Components Industries, LLC, 2005
May, 2005 – Rev. 6

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ Unless otherwise specified)

Characteristics		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage (Note 3) ($V_{GS} = 0 V_{dc}, I_D = 250 \mu A_{dc}$) Temperature Coefficient (Positive)		V _{(BR)DSS}	24 -	27.5 25.5		V _{dc} mV/°C
$ \begin{array}{l} \mbox{Zero Gate Voltage Drain Currer} \\ (V_{DS} = 20 \ V_{dc}, \ V_{GS} = 0 \ V_{dc}) \\ (V_{DS} = 20 \ V_{dc}, \ V_{GS} = 0 \ V_{dc}, \end{array} $	nt TJ = 150°C)	I _{DSS}			1.5 10	μA _{dc}
$ \begin{array}{l} \mbox{Gate-Body Leakage Current} \\ \mbox{(V_{GS} = \pm 20 \ V_{dc}, \ V_{DS} = 0 \ V_{dc} } \end{array} $	c)	I _{GSS}	_	_	±100	nA _{dc}
ON CHARACTERISTICS (Note	: 3)					
Gate Threshold Voltage (Note 3 $(V_{DS} = V_{GS}, I_D = 250 \ \mu A_{dc})$ Threshold Temperature Coeffici	V _{GS(th)}	1.0 -	1.5 4.1	2.0 _	V _{dc} mV/°C	
$ Static Drain-to-Source On-Resistance (Note 3) \\ (V_{GS} = 4.5 \ V_{dc}, \ I_D = 15 \ A_{dc}) \\ (V_{GS} = 10 \ V_{dc}, \ I_D = 20 \ A_{dc}) \\ (V_{GS} = 10 \ V_{dc}, \ I_D = 30 \ A_{dc}) \\ (V_{GS} = 10 \ V_{dc}, \ I_D = 30 \ A_{dc}) $		R _{DS(on)}		11.2 8.4 8.2	12.5 10.5 -	mΩ
Forward Transconductance (Note 3) ($V_{DS} = 10 V_{dc}$, $I_D = 15 A_{dc}$)		9fs	_	27	-	Mhos
DYNAMIC CHARACTERISTIC	S					
Input Capacitance		C _{iss}	-	948	1330	pF
Output Capacitance	$(V_{DS} = 20 V_{dc}, V_{GS} = 0 V, f = 1 MHz)$	C _{oss}	-	456	640	
Transfer Capacitance		C _{rss}	-	160	225	
SWITCHING CHARACTERIST	ICS (Note 4)					-
Turn–On Delay Time		t _{d(on)}	-	7.0	-	ns
Rise Time	$(V_{GS} = 10 V_{dc}, V_{DD} = 10 V_{dc}, V_{DD} = 10 V_{dc},$	t _r	-	53	-	
Turn–Off Delay Time	$I_D = 30 A_{dc}, R_G = 3 \Omega$	t _{d(off)}	-	14	-	
Fall Time		tf	-	10	-	
Gate Charge		QT	-	9.5	-	nC
$(V_{GS} = 4.5 V_{dc}, I_D = 30 A_{dc}, V_{DS} = 10 V_{dc})$ (Note 3)		Q ₁	-	3.0	-	
		Q ₂	-	4.4	-	
SOURCE-DRAIN DIODE CHA	RACTERISTICS		-		-	_
Forward On-Voltage		V _{SD}	- - -	0.88 1.10 0.80	1.2 - -	V _{dc}
Reverse Recovery Time		t _{rr}	_	29.1	-	ns
		ta	-	13.6	-	
	$dl_S/dt = 100 A/\mu s)$ (Note 3)	t _b	-	15.5	_]

Reverse Recovery Stored

Charge

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

 Q_{RR}

μC

_

0.02

_

versus Gate Resistance

Figure 12. Thermal Response

ORDERING INFORMATION

Device	Package	Shipping [†]
NTB65N02R	D ² PAK	50 Units / Rail
NTB65N02RG	D ² PAK (Pb-Free)	50 Units / Rail
NTB65N02RT4	D ² PAK	800 / Tape & Reel
NTB65N02RT4G	D ² PAK (Pb–Free)	800 / Tape & Reel
NTP65N02R	TO-220AB	50 Units / Rail
NTP65N02RG	TO-220AB (Pb-Free)	50 Units / Rail

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ONSEMI

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:	STYLE 6:
PIN 1. BASE	PIN 1. GATE	PIN 1. ANODE	PIN 1. GATE	PIN 1. CATHODE	PIN 1. NO CONNECT
2. COLLECTOR	2. DRAIN	2. CATHODE	2. COLLECTOR	2. ANODE	2. CATHODE
3. EMITTER	SOURCE	ANODE	3. EMITTER	CATHODE	3. ANODE
4. COLLECTOR	4. DRAIN	CATHODE	4. COLLECTOR	4. ANODE	4. CATHODE

MARKING INFORMATION AND FOOTPRINT ON PAGE 2

DOCUMENT NUMBER:	98ASB42761B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	D ² PAK 3		PAGE 1 OF 2		
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.					

D²PAK 3 CASE 418B-04 ISSUE L

DATE 17 FEB 2015

GENERIC MARKING DIAGRAM*

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42761B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED (the Document Repository. COPY" in red.			
DESCRIPTION:	D ² PAK 3		PAGE 2 OF 2			
onsemi and ONSEMi are tradema the right to make changes without furth purpose, nor does onsemi assume a special, consequential or incidental do	onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.					

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>