P1708C #### rev 1.1 #### Low Power Notebook LCD Panel EMI Reduction IC #### **Features** - FCC approved method of EMI attenuation. - Generates a low EMI spread spectrum clock of the input frequency. - Optimized for frequency range from 50 to 110MHz. - Internal loop filter minimizes external components and board space. - Four selectable spread ranges. - Low inherent cycle-to-cycle jitter. - 3.3V operating voltage range. - TTL or CMOS compatible inputs and outputs. - Ultra-low power CMOS design. - 8.46 mA @3.3V, 54MHz - 9.79 mA @3.3V, 65MHz - 12.06 mA @3.3V, 81MHz - 16.51 mA @3.3V, 108MHz - Supports notebook VGA and other LCD timing controller applications. - Pinout compatible to ICS MK1708 and Cypress CY25560. - SSON/SBM pin for Spread Spectrum On/Off and Standby Mode controls. - Available in 8-pin SOIC and TSSOP. #### **Product Description** The P1708C is a versatile spread spectrum frequency modulator designed specifically for input clock frequencies. The P1708C reduces electromagnetic interference (EMI) at the clock source, allowing system wide reduction of EMI of down stream clock and data dependent signals. The P1708C allows significant system cost savings by reducing the number of circuit board layers ferrite beads, shielding and other passive components that are traditionally required to pass EMI regulations. The P1708C modulates the output of a single PLL in order to "spread" the bandwidth of a synthesized clock, and more importantly, decreases the peak amplitudes of its harmonics. This results in significantly lower system EMI compared to the typical narrow band signal produced by oscillators and most frequency generators. Lowering EMI by increasing a signal's bandwidth is called 'spread spectrum clock generation'. The P1708C uses the most efficient and optimized modulation profile approved by the FCC and is implemented in a proprietary all digital method. #### **Applications** The P1708C is targeted towards notebook LCD displays, and other displays using an LVDS interface, PC peripheral devices, and embedded systems. ## **Pin Configuration** ### **Pin Description** | Pin# | Pin Name | Туре | Description | | | |------|----------|------|--|--|--| | 1 | CLKIN | I | Connect to externally generated clock signal. To put the part into standby mode, disable the input clock signal to this pin and pull SSON/SBM (pin 5) low. Refer Standby Mode Selection Table. | | | | 2 | VDD | Р | Connect to +3.3V. | | | | 3 | VSS | Р | Ground Connection. Connect to system ground. | | | | 4 | ModOUT | 0 | Spread spectrum clock output. | | | | 5 | SSON/SBM | I | Spread Spectrum On/Off and standby mode control. Refer Standby Mode Selection Table. This pin has an internal pull-up resistor. | | | | 6 | SR1 | 1 4 | Digital logic input used to select Spreading Range. Refer Spread Spectrum Selection Table. This pin has an internal pull-up resistor. | | | | 7 | SR0 | r | Digital logic input used to select Spreading Range. Refer Spread Spectrum Selection Table. This pin has an internal pull-up resistor. | | | | 8 | NC 4 | - | No connect. | | | rev 1.1 # **Standby Mode Selection** | CLKIN | SSON/SBM | Spread
Spectrum | ModOUT | PLL | Mode | |----------|----------|--------------------|-----------|--------------|--------------| | Disabled | 0 | N/A | Disabled | Disabled | Standby | | Disabled | 1 | N/A | Disabled | Free Running | Free Running | | Enabled | 0 | Off | Reference | Disabled | Buffer out | | Enabled | 1 | On | Normal | Normal | Normal | ## **Spread Range Selection** | | | All Man. | | |-----|-----|-----------------|-----------------------------------| | SR1 | SR0 | Spreading Range | Modulation Rate | | 0 | 0 | ± 1.00% | (F _{IN} /40) * 62.49 KHz | | 0 | 1 | ± 2.00% | (F _{IN} /40) * 62.49 KHz | | 1 | 0 | ± 0.25% | (F _{IN} /40) * 62.49 KHz | | 1 | 1 | ± 0.75% | (F _{IN} /40) * 62.49 KHz | #### **Schematic for Notebook VGA Application** Note: To set the P1708C to standby mode, disable the input clock (pin 1 CLKIN) and pull SSON (pin 5) low. Refer Standby Mode Selection Table. ## **Absolute Maximum Ratings** | Symbol | Parameter | Rating | Unit | | | |---|--|---------------|------|--|--| | V_{DD}, V_{IN} | Voltage on any pin with respect to GND | -0.5 to + 7.0 | V | | | | T _{STG} | Storage temperature | -65 to +125 | °C | | | | T _A | Operating temperature | 0 to 70 | °C | | | | Note: These are stress ratings only and functional operation is not implied. Exposure to absolute maximum | | | | | | Note: These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. #### **DC Electrical Characteristics** | Symbol | Parameter | Min | Тур | Max | Unit | |------------------|---|--------------|----------|-------------------------------|------| | V _{IL} | Input low voltage | GND - 0.3 | <u>-</u> | 0.8 | V | | V _{IH} | Input high voltage | 2.0 | - | V _{DD} + 0.3 | V | | I _{IL} | Input low current (pull-up resistors on inputs SR0, SR1 and SSON/SBM) | - | - | -35 | μΑ | | I _{IH} | Input high current | - | - | 35 | μΑ | | I _{XOL} | X _{OUT} output low current @ 0.4V, V _{DD} = 3.3V | - | 3 | - | mA | | I _{XOH} | X _{OUT} output high current @ 2.5V, V _{DD} = 3.3V | - | 3 | - | mA | | V _{OL} | Output low voltage V _{DD} = 3.3V, I _{OL} = 20mA | - | _ | 0.4 | V | | V _{OH} | Output high voltage V _{DD} = 3.3V, I _{OH} = 20mA | 2.5 | - | - | V | | I _{CC} | Dynamic supply current normal mode 3.3V and 10pF loading | 7.90 | 9.79 | 17.53
f _{IN} -max | mA | | I _{DD} | Static supply current standby mode | - | 0.6 | - | mA | | V_{DD} | Operating voltage | 2.7 | 3.3 | 3.7 | V | | t _{ON} | Power up time (first locked clock cycle after power up) | - | 0.18 | - | mS | | Z _{OUT} | Clock output impedance | - | 50 | - | Ω | ## **AC Electrical Characteristics** | Symbol | Parameter | Min | Тур | Max | Unit | | |--|--|-----|-----|-----|------|--| | f _{IN} | Input frequency | 50 | - | 110 | MHz | | | f _{OUT} | Output frequency | 50 | - | 110 | MHz | | | t _{LH} * | Output rise time
Measured at 0.8V to 2.0V | 0.7 | 0.9 | 1.1 | ns | | | t _{HL} * | Output fall time
Measured at 0.8V to 2.0V | 0.6 | 0.8 | 1.0 | ns | | | t _{JC} | Jitter (cycle to cycle) | - | _ | 360 | ps | | | t _D | Output duty cycle | 45 | 50 | 55 | % | | | *t _{LH} and t _{HL} are measured into a capacitive load of 15pF | | | | | | | ### **Package Information** ## **Mechanical Package Outline 8-Pin SOIC** | Symbol | Dimensio | ns in inches | hes Dimensions in millimeters | | | |--------|----------|--------------|-------------------------------|------|--| | | Min | Max | Min | Max | | | Α | 0.057 | 0.071 | 1.45 | 1.80 | | | A1 | 0.004 | 0.010 | 0.10 | 0.25 | | | A2 | 0.053 | 0.069 | 1.35 | 1.75 | | | В | 0.012 | 0.020 | 0.31 | 0.51 | | | С | 0.004 | 0.01 | 0.10 | 0.25 | | | D | 0.186 | 0.202 | 4.72 | 5.12 | | | E | 0.148 | 0.164 | 3.75 | 4.15 | | | e | 0.05 | 0 BSC | 1.27 BSC | | | | Н | 0.224 | 0.248 | 5.70 | 6.30 | | | L | 0.012 | 0.028 | 0.30 | 0.70 | | | θ | 0° | 8° | 0° | 8° | | Note: Controlling dimensions are millimeters $SOIC-0.074\ grams$ unit weight ## **Mechanical Package Outline 8-Pin TSSOP** | | Dimension | s in inches | Dimensions in millimeter | | |--------|-----------|-------------|--------------------------|------| | Symbol | Min | Max | Min | Max | | А | | 0.047 | | 1.10 | | A1 | 0.002 | 0.006 | 0.05 | 0.15 | | A2 | 0.031 | 0.041 | 0.80 | 1.05 | | В | 0.007 | 0.012 | 0.19 | 0.30 | | С | 0.004 | 0.008 | 0.09 | 0.20 | | D | 0.114 | 0.122 | 2.90 | 3.10 | | E | 0.169 | 0.177 | 4.30 | 4.50 | | е | 0.026 | BSC | 0.65 | BSC | | Н | 0.244 | 0.260 | 6.20 | 6.60 | | L | 0.018 | 0.030 | 0.45 | 0.75 | | θ | 0° | 8° | 0° | 8° | Note: Controlling dimensions are millimeters TSSOP -0.034 grams unit weight rev 1.1 #### **Ordering Codes** | Part Number | Marking | Package Type | Qty per reel | Temperature
(°C) | |--------------|---------|----------------------------|--------------|---------------------| | P1708C-08ST | P1708C | 8-pin SOIC, tube | | 0 to 70 | | P1708C-08SR | P1708C | 8-pin SOIC, tape & reel | 2500 | 0 to 70 | | P1708C-08TT | P1708C | 8-pin TSSOP, tube | | 0 to 70 | | P1708C-08TR | P1708C | 8-pin TSSOP, tape and reel | 2500 | 0 to 70 | | P1708CF-08ST | P1708CF | 8-pin SOIC, tube | | 0 to 70 | | P1708CF-08SR | P1708CF | 8-pin SOIC, tape & reel | 2500 | 0 to 70 | | P1708CF-08TT | P1708CF | 8-pin TSSOP, tube | | 0 to 70 | | P1708CF-08TR | P1708CF | 8-pin TSSOP, tape and reel | 2500 | 0 to 70 | #### **Device Ordering Information** Licensed under US patent $\#5,488,627,\ \#6,646,463$ and #5,631,920. www.alsc.com Alliance Semiconductor Corporation 2595, Augustine Drive, Santa Clara, CA 95054 Tel# 408-855-4900 Fax: 408-855-4999 Copyright © Alliance Semiconductor All Rights Reserved Preliminary Information Part Number: P1708C Document Version: v1.1 Note: This product utilizes US Patent # 6,646.463 Impedance Emulator Patent issued to Alliance Semiconductor, dated 11-11-2003 © Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.