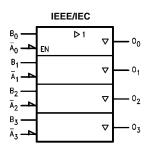
April 1988 Revised September 2000 74F125 Quad Buffer (3-STATE)

74F125 Quad Buffer (3-STATE)

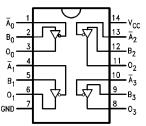
Features

■ High impedance base inputs for reduced loading

Ordering Code:


FAIRCHILD

SEMICONDUCTOR


Order Number	Package Number	Package Description
74F125SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
74F125SJ M14D		14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F125PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Unit Loading/Fan Out

Pin Names	Decerintian	U.L.	Input I _{IH} /I _{IL}		
FIII Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
Ā _n , B _n	Inputs	1.0/0.033	20 μA/–20 μA		
On	Outputs	600/106.6 (80)	–12 mA/64 mA (48 mA)		

Function Table

Inpu	Output				
Ān	B _n	о			
L	L	L			
L	н	н			
н	Х	Z			

H = HIGH Voltage Level L = LOW Voltage Level

Z = High Impedance X = Immaterial

© 2000 Fairchild Semiconductor Corporation DS009475

www.fairchildsemi.com

74F125

Absolute Maximum Ratings(Note 1)

Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$
Junction Temperature under Bias	$-55^{\circ}C$ to $+150^{\circ}C$
$V_{\mbox{\scriptsize CC}}$ Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated $I_{OL} \mbox{(mA)}$

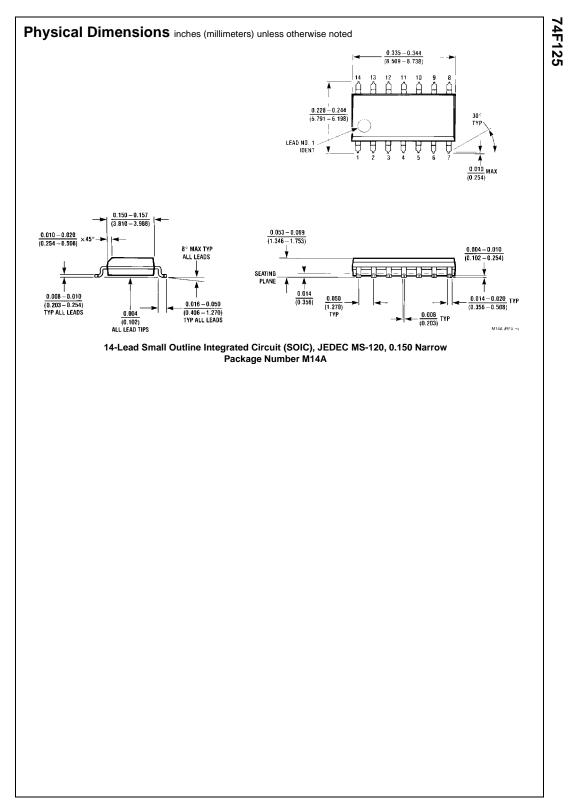
Recommended Operating Conditions

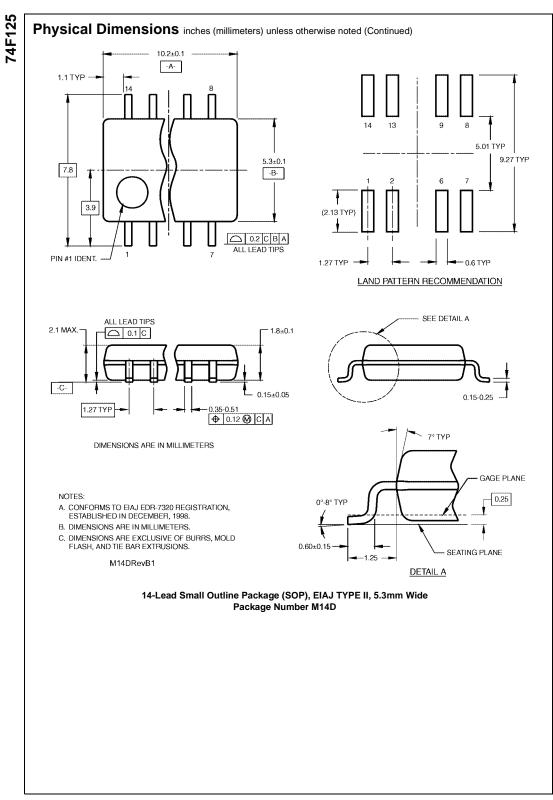
Free Air Ambient Temperature	
Supply Voltage	

 $0^{\circ}C$ to $+70^{\circ}C$ +4.5V to +5.5V

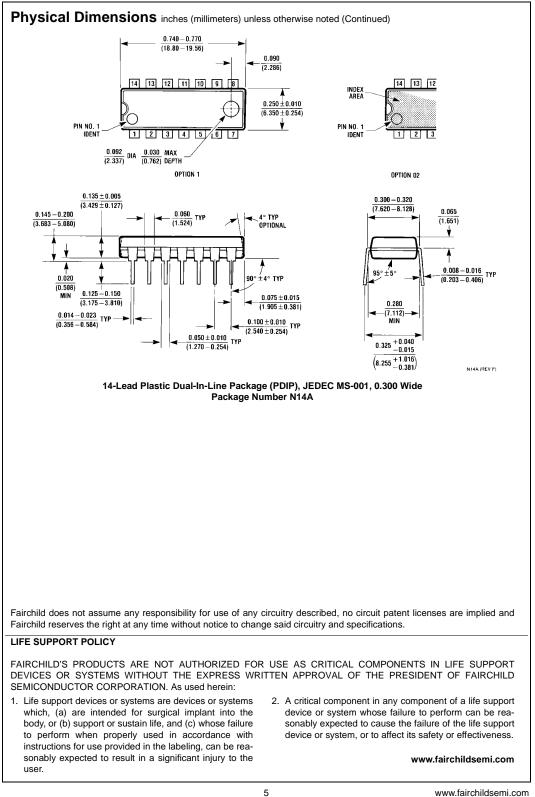
Note 1: Absolute maximum ratings are values beyond which the device -0.5V to V_{CC} may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Paramete	r	Min	Тур	Max	Units	V _{cc}	Conditions
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signa
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltag	e			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.4					I _{OH} = -3 mA
	Voltage	10% V _{CC}	2.0			v	Min	$I_{OH} = -12 \text{ mA}$
		5% V _{CC}	2.7			v	IVIIN	I _{OH} = -3 mA
		5% V _{CC}	2.0					I _{OH} = -15 mA
V _{OL}	Output LOW	10% V _{CC}			0.55	V	Min	I _{OL} = 64 mA
	Voltage							
I _{IH}	Input HIGH Current				20	μA	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current				100	۸	0.0V	$\gamma = 2.0 \gamma$
	Breakdown Test				100	μA	0.00	V _{IN} = 7.0V
IIL	Input LOW Current				-20.0	μA	Max	V _{IN} = 0.5V
I _{OZH}	Output Leakage Current				50	μA	Max	V _{OUT} = 2.7V
I _{OZL}	Output Leakage Current				-50	μA	Max	$V_{OUT} = 0.5V$
los	Output Short-Circuit Curre	ent	-100		-225	mA	Max	V _{OUT} = 0V
ICEX	Output HIGH Leakage Cu	rrent			250	μA	Max	$V_{OUT} = V_{CC}$
I _{ZZ}	Buss Drainage Test				500	μA	0.0V	V _{OUT} = 5.25V
I _{CCH}	Power Supply Current			18.5	24.0	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			31.7	40.0	mA	Max	$V_0 = LOW$
I _{CCZ}	Power Supply Current			27.6	35.0	mA	Max	V _O = HIGH Z

AC Electrical Characteristics


Symbol	Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$	
		Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	2.0	4.0	6.0	2.0	6.5	
t _{PHL}		3.0	4.6	7.5	3.0	8.0	ns
t _{PZH}	Output Enable Time	3.5	4.7	7.5	3.0	8.5	
t _{PZL}		3.5	5.3	8.0	3.5	9.0	ns
t _{PHZ}	Output Disable Time	1.5	3.9	5.5	1.5	6.0	
t _{PLZ}		1.5	4.0	6.0	1.5	6.5	ns

www.fairchildsemi.com

www.fairchildsemi.com

74F125 Quad Buffer (3-STATE

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: 74F125SJX_NL